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* Introduction Motivation
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# Introduction Motivation

Swampland Conjectures

@ AdS/KK scale separation conjecture!: In any AdS
vacua there is no separation between the AdS and

the lightest KK scales.

@ AdS Distance Conjecture?: Any AdS vacuum has
an infinite tower of states that becomes light in the

flat space limit A — 0, satisfying m ~ |A|*.

Strong version: o = 1/2 for SUSY and a > 1/2 for

non-SUSY = no scale separation.

Tested in different contexts. Compactifications in
AdSy X Xg, with Romans mass and membranes in the

smearing approximation3 remain elusive.

1 D. Tsimpis, Supersymmetric AdS vacua and separation of scales, 2012

2D. List, E. Palti and C. Vafa, AdS and the Swampland, 2019
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Scale-separated AdS4 vacua of A

Introduction Recent progress

@ Main complains to these models: Romans mass and the backreaction of the orientifold

planes.

@ These problems were circumvented recently! by T dualising DGKT solutions on a

factorized torus.

J=—L" L

H; = 2mRe Q,
gsFo =5m,
gF =0,

8Fa = e,0?,
gsF(S =0

dv' = dv® =0

_—
T-duality

1

J= —L720 2%y 2
H; =0
gsFo =0,

gsF2 = mw1 + e3w2 + euws,
gsF4 = Oa
gsF¢ = erdvolg

1 23 45 6 34 25
dvi = —v= — v dv’ = —v v

)

N. Cribiori, D. Junghans, V. Van Hemelryck, T. Van Riet and T. Wrase Scale-separated AdS4 vacua of IIA orientifolds and M-theory, 2021



Scale-separated AdS4 vacua of A

Introduction Recent progress

Take a particular scaling for the fluxes, respecting the constraints of the Bianchi identity

(m cannot scale).

eana7 eQNnba e3Nnc7
with a, b,c > 0.
If we choose ¢ > b and b >0, Lxx ~ Lp and
2
Lk —b
o
H

Two interesting regimes with parametrically small backreaction®: a weakly coupled regime
admitting a family of solutions in perturbative type IlA and a strongly coupled regime with

a family of solutions that can be lifted to M-theory.

1

N. Cribiori, D. Junghans, V. Van Hemelryck, T. Van Riet and T. Wrase Scale-separated AdS4 vacua of IIA orientifolds and M-theory, 2021



* Introduction Recent progress

Previous work and current goal

@ In a previous paper! we tried to provide a unified treatment of moduli stabilisation in

massive type IlIA using the bilinear formalism of the scalar potential and including metric
fluxes.

@ We classified the solutions to the equations of motion. We did not find scale separation.

lF. Marchesano, D. Prieto, J. Quirant and P. Shukla Systematics of type IIA moduli stabilisation, 2020
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Previous work and current goal

@ In a previous paper! we tried to provide a unified treatment of moduli stabilisation in

massive type IlIA using the bilinear formalism of the scalar potential and including metric
fluxes.

@ We classified the solutions to the equations of motion. We did not find scale separation.

@ In this project we aim to
o Provide a new family of solutions that contains the one described in Cribiori et al.
21.

o Study scale separation in more general settings beyond the factorized torus.

lFA Marchesano, D. Prieto, J. Quirant and P. Shukla Systematics of type IIA moduli stabilisation, 2020
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Systematics of Type IIA moduli stabilisation Definitions and notation

Manifold and Moduli

@ Type llA string theory compactified on an orientifold of Xz x X with X a compact
Calabi-Yau three-fold.

@ Standard orientifold quotient by Q,(—) LR with R an involution of the Calabi-Yau metric.
@ Complexify and decompose in terms of the moduli and a basis of harmonic 2-forms (w,)

and symplectic 3-forms (ap,8%).

J=Btie? )= (b +it)w, = Tw,

N =i =63 [, Qe n B
Q.= G+ iRe(CQ) — Je

Un =€/\+iU/\=£;3fX69c/\a/\



# Systematics of Type IIA moduli stabilisation Definitions and notation
Flux superpotential

@ Expand the p-form field strengths in the basis of quantised forms
Fo=-m, F=m'w, Fi=-ed", Fo=ea®, H=hs"—ha.

@ The flux superpotential including RR and NS fluxes is described in terms of a

twisted differential operator:

D=d+HAN+ _fa ,

geometric
faw, = fax 5 — Fan.
@ Leads to the following superpotential
(s Wik = e + €T 2 Koper T T 4 7 Koo TPTHT,

£ Was = U" [hu + T"] .



* Systematics of Type IIA moduli stabilisation Bilinear formulation

F-term flux potential

@ From standard supergravity expression
w2 Vg = e (KAE DAW Dy W -3 |W|2) s VE = pa ZAB pys.

@ Flux and axion polynomials p a4 = {po, pa, p?, B> P, Pap }:
(opo = €0+ eab + - Kopem®bPBE + 7 Kapeb®bPBS +
£apa = €3+ Kapem®b® + 2 Kapcb"b + pasé?
Lsp? = m® + mb?,
lsp=m,
bspp = by + faub?,

Zspau = fap, .



* Systematics of Type IIA moduli stabilisation Ansatz
Stability, F-terms and Ansatz
@ Criterium to analyse vacua metastability for F-term potentials in 4d supergravity! leads to

pa=L1P 8K, Kapf® + paput = £;1Q0,K ,

o =L5IMOLK, t7pap = £ IN LK .

1

M. Gomez-Reino and C. A. Scrucca Locally stable ipersy ic Mii i vacua in ity, 2006
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Stability, F-terms and Ansatz

@ Criterium to analyse vacua metastability for F-term potentials in 4d supergravity! leads to

pa=L1P 8K, Kapf® + paput = £;1Q0,K ,

o =L5IMOLK, t7pap = £ IN LK .

@ The equations of motion for the axions are
8(poM — PN)O,K =0,

1
8P(po — Q) — 37K (10Q — 8N)| 9K + [Kf + 8P — 8M] popu = 0.

@ As long as the terms in brackets do not vanish independently pa, u* oc 92K and so

bspo = AK, lspp = EKOLK
l = BKo:K, F
sPa a Zsﬂau ta — Z’CauK R
Esﬁa = Ctaa F
L ut = —K8.K .
tj=D, sPap 3 a

i vacua in ity, 2006

1M. Gomez-Reino and C. A. Scrucca Locally stable ipersy ric Mii



Systematics of Type IIA moduli stabilisation Ansatz

Branches of vacua
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# Systematics of Type IIA moduli stabilisation Vacuum energy and KK scale

Vacuum energy and KK scale

@ Imposing the extremisation of the potential we obtain

4k V |vac = —%eKICze <2A2F + 64AFE? + %CE + 1%)

X

@ Assuming all K&hler saxions scale equally, we compare the AdS scale with KK scale

and arrive to

A2 /3 t4
AdS e2D\/X6/ F2 ~ ?sz

@ Scale separation very difficult since generally u ~ t°.
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* Moduli Stabilization and Scale speration MeTEinEARprcaches

Merging approaches

@ Cribiori et al. '21 example is not described by the refined ansatz of systematics. We go

back to our original proposal and set

pa=0, PuIO, p=0,

Kapd® 4 paput = 10 8:K 200 = L5 IN LK .




* Moduli Stabilization and Scale speration MeTEinEARprcaches

Merging approaches

@ Cribiori et al. '21 example is not described by the refined ansatz of systematics. We go

back to our original proposal and set

p3:07 Pu:07 520,
Kapd® 4 paput = 10 8:K 200 = L5 IN LK .
AF

) 0.

@ We obtain four different families of vacua: 0
3 0.2 °a)
Q:N, po::l:EQ, —:a), +b) c .b)

! - F

14 2 e 0
Q= TN, po=+V5Q  d) )




Moduli Stabilization and Scale speration Merging Approaches

Factorized Torus with rank-two metri

@ Take factorized 6-torus T = ®?:1 T2, with F4 = H3 = 0. Fluxes constraint by the tadpole
DFgr = mafauﬁu = (mlflu + m2f2y, + m3f3u)ﬁu~

@ Try rank-two metric fluxes (fi,, fo,.).
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=) €
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Moduli Stabilization and Scale speration Merging Approaches

Factorized Torus with rank-two met

@ Take factorized 6-torus T = ®?:1 T2, with F4 = H3 = 0. Fluxes constraint by the tadpole
DFRF\’ = mafauﬁu = (mlfly, + m2f2y, + m3f3u)5#~

@ Try rank-two metric fluxes (fi,, f,.).

@ From the results of moduli stabilization we deduce
142 €0 22 €0 2 2
(P~ 2 (2P~ 2 (B~ am®, (W)~ am’.
m m

@ Take ey ~ n? and m® ~ nP. No scale separation. The strong distance conjecture is

verified. ) )
M L
KK H 1/2
—B N~ T~ 1 Mgk ~ AL
A L2 KK

KK



Moduli Stabilization and Scale speration Merging Approaches

Factorized Torus with rank-one met

@ Set frp = 0. We get more freedom to scale the flux quanta. From the results of moduli

stabilization we deduce

20 egm?m3

27 f2 m!

3eom 5 egm? 5 egm?
2 242 3\2 _ 042
(t')? = iyt (t5)° = 3mind’ (t) = 3 ()=

2

@ Taking ey ~ n?, m? ~ n® and m® ~ n°, the scalings read

o~ n(a—b—c)/2’ 2~ n(a+b—c)/2’ £~ n(a—b+c)/2’ WO~ platb+c)/2.



Moduli Stabilization and Scale speration Merging Approaches

Factorized Torus with rank-one me

@ Set frp = 0. We get more freedom to scale the flux quanta. From the results of moduli

stabilization we deduce

3eom 5 e
2 22 3\2 _
(P =0, (@R = 2 S0 (@)= 2 S

5 e0m3

@ Taking ey ~ n?, m? ~ n® and m® ~ n°, the scalings read

o~ n(a—b—c)/2’ 2~ n(a+b—c)/2’ £~ n(a—b+c)/2’

@ Choosing b > ¢ we observe

() =

IJONn

20 egm?m
27 f2 m!

(a+b+c)/2.

(LuMp) ™2 ~ 0= 3@H04O) (Ll p) =2 ~ pm 3003,

@ Hence we obtain scale separation.

M2 L2
KK ., “H

2
A Lik

~n° — MKK ~ nc/\l/Z.

3



Moduli Stabilization and Scale speration Generalization

Moduli Stabilization with rank-one m

@ If fa, is a rank-one = fay = 040y, .
@ From p, = 0 we derive h, = 0o, = 02b%|vac = —0.

@ Let J? to be the inverse of K,,cmC¢. The vacuum condition p, = 0 means

ba'vac = _Jabeb - Jababaugulvac .
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Moduli Stabilization with rank-one

@ If fa, is a rank-one = fay = 040y, .

@ From p, = 0 we derive h, = 0o, = 02b%|vac = —0.
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Q
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@ And together with t?p,, = £ N 8, K we fix the complex structure saxions

- < %Jaboaﬁb + J?bos0y ouu“> o= QLK.



Moduli Stabilization and Scale speration Generalization

Moduli Stabilization with rank-one

@ If fa, is a rank-one = fay = 040y, .

@ From p, = 0 we derive h, = 00y, = 02b%|vac = —0.

@ Let J? to be the inverse of K pcmS. The vacuum condition p, = 0 means
b?|vac = —JPep — JP7p01 6 |vac -

@ Relation ICabﬁb + paput = €;1Q85K allows us to fix the Kahler saxions

-3 Q

b b
ta|vac = EJB Ky — J2 Ubauu“|vac .

And together with t?pa, = £5 'V 9, K we fix the complex structure saxions

- ( %Jaboaﬁb + J?bos0y ouu“> o= QLK.

We use the last equation of our anasatz to fix the parameter Q:

1 1 (o0 — J?Po,ep)?
P0|vac =€ — *Jabeaeb + *7( 2 ) =

3
+-Q.
2 2 Jabg oy 2 Q



# Moduli Stabilization and Scale speration Gt

Scale separation in Elliptic Fibratio

@ Let n;; be the intersection numbers of the base and ¢; = clwj its first Chern class.

K =0, Kuyj=ni, Kui=nicd, K =nzc'c.

@ Choose metric fluxes along the torus fibre. Tadole condition constraints mt.

@ Consider r > s > 0. We are free to scale

me~n, mbt~1, e~n¥, en~n", e ~n* "%, hy ~n

We obtain t' ~ n’, tL ~ n and ut ~ n?—

°, which behaves the same as the example from
Cribiori et al. '21.




# Moduli Stabilization and Scale speration Gt

Scale separation in Elliptic Fibratio

@ Let n;; be the intersection numbers of the base and ¢; = c'wj its first Chern class.

Kig=0, Ky=mnj, Kui=ngd, Ku=nic'd.

@ Choose metric fluxes along the torus fibre. Tadole condition constraints mt.

@ Consider r > s > 0. We are free to scale

manr—s, mLN17 eo~n2’, el_Nnr7 eLNn2r—s7 hl"’an
We obtain t' ~ n’, tL ~ nS and u ~ n?' =S, which behaves the same as the example from
Cribiori et al. '21.

@ For a trivial fibration (like K3 x T2) ¢/ — 0 and we have an exact symmetry.
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Conclusions

We have extended the study of moduli stabilization to a new family of solutions that was

overlooked in Marchesano et al. '20.

Scale separation found in Type IlA orientifolds with no Romans mass and rank-one metric

fluxes. Generalizes the model built by Cribiori et al. '21 to elliptic fibrations.

Study of scale separation for previous families was too naive. Maybe it can still be found

allowing for more elaborated scalings of the flux quanta.

On going work: uplift to 10d and stability.
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We have extended the study of moduli stabilization to a new family of solutions that was

overlooked in Marchesano et al. '20.

Scale separation found in Type IlA orientifolds with no Romans mass and rank-one metric

fluxes. Generalizes the model built by Cribiori et al. '21 to elliptic fibrations.

Study of scale separation for previous families was too naive. Maybe it can still be found

allowing for more elaborated scalings of the flux quanta.

On going work: uplift to 10d and stability.

Thanks for your attention!! )
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