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Introduction Motivation

Swampland Conjectures

AdS/KK scale separation conjecture1: In any AdS

vacua there is no separation between the AdS and

the lightest KK scales.

AdS Distance Conjecture2: Any AdS vacuum has

an infinite tower of states that becomes light in the

flat space limit Λ → 0, satisfying m ∼ |Λ|α.

Strong version: α = 1/2 for SUSY and α ≥ 1/2 for

non-SUSY ⇒ no scale separation.

Tested in different contexts. Compactifications in

AdS4 × X6, with Romans mass and membranes in the

smearing approximation3 remain elusive.

Figure: Swampland and Landscape of EFTs.

[Van Beest, Calderon-Infante, Mirfendereski,

Valenzuela ’21].

1
D. Tsimpis, Supersymmetric AdS vacua and separation of scales, 2012

2
D. Lüst, E. Palti and C. Vafa, AdS and the Swampland, 2019

3
O. DeWolfe, A. Giryavets, S. Kachru and W. Taylor, Type IIA moduli stabilization, JHEP 07 (2005) 066
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Introduction Recent progress

Scale-separated AdS4 vacua of IIA orientifolds

Main complains to these models: Romans mass and the backreaction of the orientifold

planes.

These problems were circumvented recently1 by T dualising DGKT solutions on a

factorized torus.

J = −L2
1v

16 − L2
2v

24 + L2
3v

35

H3 = 2mReΩ ,

gsF0 = 5m ,

gsF2 = 0 ,

gsF4 = eaω̃
a
,

gsF6 = 0

dv1 = dv6 = 0

========⇒
T-duality

J = −L−2
1 v16 − L2

2v
24 + L2

3v
35

H3 = 0

gsF0 = 0 ,

gsF2 = mω1 + e3ω2 + e2ω3 ,

gsF4 = 0 ,

gsF6 = e1dvol6

dv1 = −v23 − v45
, dv6 = −v34 − v25

1
N. Cribiori, D. Junghans, V. Van Hemelryck, T. Van Riet and T. Wrase Scale-separated AdS4 vacua of IIA orientifolds and M-theory, 2021
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Introduction Recent progress

Scale-separated AdS4 vacua of IIA orientifolds

Take a particular scaling for the fluxes, respecting the constraints of the Bianchi identity

(m cannot scale).

e1 ∼ na , e2 ∼ nb , e3 ∼ nc ,

with a, b, c ≥ 0.

If we choose c ≥ b and b > 0, LKK ∼ L2 and

L2KK
L2H

∼ n−b .

Two interesting regimes with parametrically small backreaction1: a weakly coupled regime

admitting a family of solutions in perturbative type IIA and a strongly coupled regime with

a family of solutions that can be lifted to M-theory.

1
N. Cribiori, D. Junghans, V. Van Hemelryck, T. Van Riet and T. Wrase Scale-separated AdS4 vacua of IIA orientifolds and M-theory, 2021



Introduction Recent progress

Previous work and current goal

In a previous paper1 we tried to provide a unified treatment of moduli stabilisation in

massive type IIA using the bilinear formalism of the scalar potential and including metric

fluxes.

We classified the solutions to the equations of motion. We did not find scale separation.

In this project we aim to

Provide a new family of solutions that contains the one described in Cribiori et al.

’21.

Study scale separation in more general settings beyond the factorized torus.

1
F. Marchesano, D. Prieto, J. Quirant and P. Shukla Systematics of type IIA moduli stabilisation, 2020
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Systematics of Type IIA moduli stabilisation Definitions and notation

Manifold and Moduli

Type IIA string theory compactified on an orientifold of X4 × X6 with X6 a compact

Calabi-Yau three-fold.

Standard orientifold quotient by Ωp(−)FLR with R an involution of the Calabi–Yau metric.

Complexify and decompose in terms of the moduli and a basis of harmonic 2-forms (ωa)

and symplectic 3-forms (αΛ,β
K ).

Jc ≡ B + i e
ϕ
2 J = (ba + ita)ωa = T aωa

Ωc ≡ C3 + i Re (CΩ) −→

NK = ξK + inK = ℓ−3
s

∫
X6

Ωc ∧ βK

UΛ = ξΛ + iuΛ = ℓ−3
s

∫
X6

Ωc ∧ αΛ



Systematics of Type IIA moduli stabilisation Definitions and notation

Flux superpotential

Expand the p-form field strengths in the basis of quantised forms

F0 = −m, F2 = ma ωa, F4 = −ea ω̃
a, F6 = e0 Φ6 , H = hKβ

K − hΛαΛ .

The flux superpotential including RR and NS fluxes is described in terms of a

twisted differential operator:

D = d + H ∧+ f ◁︸︷︷︸
geometric

,

f ◁ ωa = faKβ
K − f Λa αΛ .

Leads to the following superpotential

ℓsWRR = e0 + eaT
a +

1

2
Kabcm

aT bT c +
m

6
Kabc T

aT bT c ,

ℓsWNS = Uµ
[
hµ + faµT

a
]
.



Systematics of Type IIA moduli stabilisation Bilinear formulation

F-term flux potential

From standard supergravity expression

κ2
4 VF = eK

(
KAB DAW DB′W − 3 |W |2

)
−→ VF = ρA ZAB ρB .

Flux and axion polynomials ρA = {ρ0, ρa, ρ̃a, ρ̃, ρµ, ρaµ}:

ℓsρ0 = e0 + eab
a +

1

2
Kabcm

abbbc +
m

6
Kabcb

abbbc + ρµξ
µ ,

ℓsρa = ea +Kabcm
bbc +

m

2
Kabcb

bbc + ρaµξ
µ ,

ℓs ρ̃
a = ma +mba ,

ℓs ρ̃ = m ,

ℓsρµ = hµ + faµb
a ,

ℓsρaµ = faµ .



Systematics of Type IIA moduli stabilisation Ansatz

Stability, F-terms and Ansatz

Criterium to analyse vacua metastability for F-term potentials in 4d supergravity1 leads to

ρa = ℓ−1
s P ∂aK , Kab ρ̃

b + ρaµu
µ = ℓ−1

s Q ∂aK ,

ρµ = ℓ−1
s M ∂µK , taρaµ = ℓ−1

s N ∂µK .

The equations of motion for the axions are

8 (ρ0M−PN ) ∂µK = 0 ,[
8P(ρ0 −Q)−

1

3
ρ̃K (10Q− 8N )

]
∂aK + [Kρ̃+ 8P − 8M] ρaµu

µ = 0 .

As long as the terms in brackets do not vanish independently ρaµuµ ∝ ∂aK and so

ℓsρ0 = AK ,

ℓsρa = BK∂aK ,

ℓs ρ̃
a = Cta ,

ℓs ρ̃ = D ,

ℓsρµ = EK∂µK ,

ℓsρaµt
a =

F

4
K∂µK ,

ℓsρaµu
µ =

F

3
K∂aK .

1
M. Gomez-Reino and C. A. Scrucca Locally stable non-supersymmetric Minkowski vacua in supergravity, 2006
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Systematics of Type IIA moduli stabilisation Ansatz

Branches of vacua

Branch AF BF CF DF

SUSY − 3
8

− 3
2
EF

1
4

15EF

non-SUSY fig. 4AFEF fig.
√
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C2
F
+ (4A2

F + 1) 12EF
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CF
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-0.4
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Systematics of Type IIA moduli stabilisation Vacuum energy and KK scale

Vacuum energy and KK scale

Imposing the extremisation of the potential we obtain

4πκ4
4V |vac = −4

3
eKK2F 2

(
2A2

F + 64A2
FE

2
F +

1

18
C 2
F +

5

18

)
︸ ︷︷ ︸

χ

Assuming all Kähler saxions scale equally, we compare the AdS scale with KK scale

and arrive to
Λ2
AdS

M2
KK

∼ e2DV
4/3
X6

F 2 ∼ t4

u2
F 2χ .

Scale separation very difficult since generally u ∼ t2.
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Moduli Stabilization and Scale speration



Moduli Stabilization and Scale speration Merging Approaches

Merging approaches

Cribiori et al. ’21 example is not described by the refined ansatz of systematics. We go

back to our original proposal and set

ρa = 0 , ρµ = 0 , ρ̃ = 0 ,

Kab ρ̃
b + ρaµu

µ = ℓ−1
s Q ∂aK , taρaµ = ℓ−1

s N ∂µK .

We obtain four different families of vacua:

Q = N , ρ0 = ±
3

2
Q, − : a), + : b)

Q =
14

3
N , ρ0 = ±

√
5Q d)

- 4 - 2 2
CF

- 0.6

- 0.4

- 0.2

0.2

0.4

0.6

A F

a)

b)

c)

d)
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Moduli Stabilization and Scale speration Merging Approaches

Factorized Torus with rank-two metric fluxes

Take factorized 6-torus T 6 = ⊗3
i=1T

2, with F4 = H3 = 0. Fluxes constraint by the tadpole

DFRR = mafaµβ
µ = (m1f1µ +m2f2µ +m3f3µ)β

µ.

Try rank-two metric fluxes (f1µ, f2µ).

From the results of moduli stabilization we deduce

(t1)2 ∼
e0

m3
, (t2)2 ∼

e0

m3
, (t3)2 ∼ e0m

3, (u0)2 ∼ e0m
3.

Take e0 ∼ na and m3 ∼ nb. No scale separation. The strong distance conjecture is

verified.
M2

KK

Λ
∼

L2H
L2KK

∼ 1 → MKK ∼ Λ1/2 .
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Moduli Stabilization and Scale speration Merging Approaches

Factorized Torus with rank-one metric fluxes

Set f20 = 0. We get more freedom to scale the flux quanta. From the results of moduli

stabilization we deduce

(t1)2 =
3

5

e0m1

m2m3
, (t2)2 =

5

3

e0m2

m1m3
, (t3)2 =

5

3

e0m3

m1m2
, (u0)2 =

20

27

e0m2m3

f 210m
1

.

Taking e0 ∼ na, m2 ∼ nb and m3 ∼ nc , the scalings read

t1 ∼ n(a−b−c)/2, t2 ∼ n(a+b−c)/2, t3 ∼ n(a−b+c)/2, u0 ∼ n(a+b+c)/2.

Choosing b > c we observe

(LHMP)
−2 ∼ n−

3
2
(a+b+c), (LKKLPl)

−2 ∼ n−
3
2
(a+b)− 1

2
c .

Hence we obtain scale separation.

M2
KK

Λ
∼

L2H
L2KK

∼ nc → MKK ∼ ncΛ1/2.
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Moduli Stabilization and Scale speration Generalization

Moduli Stabilization with rank-one metric fluxes

If faµ is a rank-one ⇒ faµ = σaσµ .

From ρµ = 0 we derive hµ = σσµ ⇒ σaba|vac = −σ.

Let Jab to be the inverse of Kabcm
c . The vacuum condition ρa = 0 means

ba|vac = −Jabeb − Jabσbσµξ
µ|vac .

Relation Kab ρ̃
b + ρaµuµ = ℓ−1

s Q ∂aK allows us to fix the Kähler saxions

ta|vac = −3
Q
K
JabKb − Jabσbσµu

µ|vac .

And together with taρaµ = ℓ−1
s N ∂µK we fix the complex structure saxions

−
(
3
Q
K
JabσaKb + Jabσaσb σµu

µ

)
σµ = Q ∂µK .

We use the last equation of our anasatz to fix the parameter Q:

ρ0|vac = e0 −
1

2
Jabeaeb +

1

2

(σ − Jabσaeb)
2

Jabσaσb
= ±

3

2
Q .
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Moduli Stabilization and Scale speration Generalization

Scale separation in Elliptic Fibrations

Let ηij be the intersection numbers of the base and c1 = c iωi its first Chern class.

Kijk = 0 , KLij = ηij , KLLi = ηijc
j , KLLL = ηijc

ic j .

Choose metric fluxes along the torus fibre. Tadole condition constraints mL.

Consider r > s > 0. We are free to scale

mi ∼ nr−s , mL ∼ 1 , e0 ∼ n2r , ei ∼ nr , eL ∼ n2r−s , hµ ∼ ns

We obtain t i ∼ nr , tL ∼ ns and uµ ∼ n2r−s , which behaves the same as the example from

Cribiori et al. ’21.

For a trivial fibration (like K3 × T 2) c i → 0 and we have an exact symmetry.
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Conclusions

Conclusions

We have extended the study of moduli stabilization to a new family of solutions that was

overlooked in Marchesano et al. ’20.

Scale separation found in Type IIA orientifolds with no Romans mass and rank-one metric

fluxes. Generalizes the model built by Cribiori et al. ’21 to elliptic fibrations.

Study of scale separation for previous families was too naive. Maybe it can still be found

allowing for more elaborated scalings of the flux quanta.

On going work: uplift to 10d and stability.

Thanks for your attention!!
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